

UNIVERSIDADE FEDERAL DE OURO PRETO PRÓ-REITORIA DE GRADUAÇÃO

PROGRAMA DE DISCIPLINA

Disciplina ESTATÍSTICA ESPACIAL APLICADA APPLIED SPATIAL STATISTICS						Código	EST108
Departamento Estatística – DEEST				Instituto de Ciências Exatas e Biológicas – ICEB			
Duração/Semana	Carga Horária	Teórica	Prática	Carga Horária	Hora/aul	a:	Horas:
18	Semanal	04	00	Semestral	7	'2	60
EMENTA							

EMENTA

Componentes de dados espaciais, Processos Pontuais, Dados Caso-Controle, Dados Agrupados, Clusterização, Métodos de detecção de clusters espaciais, Significância Estatística de candidatos a cluster, Qualidade dos métodos de detecção, Clusters Espaciais de forma irregular.

CONTEÚDO PROGRAMÁTICO

Introdução à dados espaciais: Análise de dados espaciais, Tipos de dados, Sistemas Geográficos de Informação (GIS).

Visualização de dados espaciais: Gráficos de dados espaciais: pontos, linhas, polígonos e grids, Eixos, escalas, legendas, cores e outros atributos.

Análise de dados pontuais: Completa aleatoriedade espacial, Núcleos estimadores para intensidade, Método do vizinho mais próximo, Função K e função L, Estudos Caso-controle.

Análise de dados de área: Estruturas de vizinhança espacial, Matriz de pesos espaciais, Autocorrelação espacial: testes globais e testes locais, Modelos autoregressivos simultâneos (SAR), Modelos autoregressivos condicionais (CAR), Modelos de regressão espacial, Modelos de efeitos mistos.

Mapeamento de doenças: Introdução, Detecção de clusters de doenças, Modelo clássico de riscos relativos, Testes genéricos: método GAM de Openshaw, método de Besag e Newel e método de varredura de Kulldorf, Testes focados: teste de escore e teste de Stone.

Geoestatística: Introdução, Processos estacionários: variograma, covariograma e correlograma, Predição espacial: krigagem simples, ordinária e universal, Krigagem local x krigagem global.

BIBLIOGRAFIA

DRUCK, S.; CARVALHO, M.S.; CÂMARA, G.; MONTEIRO, A.V.M. Análise Espacial de Dados Geográficos. Brasília: EMBRAPA. 2004

SANTOS, S.M.; SOUZA, W.V. Introdução à Estatística Espacial para a Saúde Pública. Ministério da Saúde, Fundação Oswaldo Cruz. 2007

DIGGLE, P., Statistical Analysis of Spatial Point Patterns

ROGERSON, P.; YAMADA, I., Statistical Detection and Surveillance of Geographic clusters.

WALLER, L.A.; GOTWAY C.A., Applied Spatial Statistics for Public Health Data.

BIBLIOGRAFIA COMPLEMENTAR

RIPLEY, B. Spatial Statistics. Londres: John Wiley and Sons. 1993.

CRESSIE, N. Statistics for Spatial Data, segunda edição. Nova York: John Wiley and Sons, 1995.

CASELA, G.; BERGER, R.L., Inferência Estatística.

ROSS, S., Probabilidade: Um curso moderno com aplicações.

BAILEY, T.; GATRELL, A. Interactive Spatial Data Analysis. Londres: Longman Pub. 1998.