Ronaldo. J. C. Batista

2019
Mendonça BHS, de Freitas DN, Köhler MH, Batista RJC, Barbosa MC, de Oliveira AB. Diffusion behaviour of water confined in deformed carbon nanotubes. Physica A: Statistical Mechanics and its Applications [Internet]. 2019;517 :491 - 498. Publisher's VersionAbstract
We use molecular dynamics simulations to study the diffusion of water inside deformed carbon nanotubes with different degrees of eccentricity at 300 K. We found a water structural transition between tubular-like to single-file for (7,7) nanotubes associated with change from a high to low mobility regimes. Water is frozen when confined in a perfect (9,9) nanotube and it becomes liquid if such a nanotube is deformed above a certain threshold. Water diffusion enhancement (suppression) is related to a reduction (increase) in the number of hydrogen bonds. This suggests that the shape of the nanotube is an important ingredient when considering the dynamical and structural properties of confined water.
Dias RF, da Costa CC, Manhabosco TM, de Oliveira AB, Matos MJS, Soares JS, Batista RJC. Ab initio molecular dynamics simulation of methanol and acetonitrile: The effect of van der Waals interactions. Chemical Physics Letters [Internet]. 2019;714 :172 - 177. Publisher's VersionAbstract
We employed PBE and BLYP semi-local functionals and the van der Waals density functional of Dion et al. (2004) (vdW-DF) to investigate structural properties of liquid acetonitrile and methanol. Among those functionals the vdW-DF is the only one that correctly predicts energy minima in inter-molecular interactions between acetonitrile molecules. We found that van der Waals interactions have a negligible effect on H-bonds in methanol chains. However, it significantly increases chain packing resulting in a more dense liquid in comparison to the other two functionals. The overall trend is that the vdW-DF tends to overestimate density and bulk modulus, meanwhile the semi-local functionals tend to underestimate density. Thus, van der Waals interactions play an important role in the properties of liquids in which much stronger dipole-dipole interactions are present.
2018
Nhavene EPF, da Silva WM, Junior RRT, Gastelois PL, Venâncio T, Nascimento R, Batista RJC, Machado CR, de Macedo WAA, de Sousa EMB. Chitosan grafted into mesoporous silica nanoparticles as benznidazol carrier for Chagas diseases treatment. Microporous and Mesoporous Materials [Internet]. 2018;272 :265 - 275. Publisher's VersionAbstract
The use of chitosan functionalized silica for benznidazole delivery in the treatment of neglected disease such as Chagas disease is one of the forms not yet explored, but with great potential for this therapy, as little is known about nanoformulations for the treatment of Chagas disease. In this work, we used chitosan-succinate covalently attached to the surface pore of MSNs to act as anchor for benznidazole as a delivery system. The samples were characterized structurally and chemically with multiple techniques. The applicability of functionalized MSNs as platforms for benznidazole delivery into T. cruzi parasites was assessed. The results demonstrate that the proposed system is a potential promising nanoplatform for drug and gene delivery targeting neglected diseases such as Chagas disease.
Ferrari GA, de Oliveira AB, Silvestre I, Matos MJS, Batista RJC, Fernandes TFD, Meireles LM, Eliel GSN, Chacham H, Neves BRA, et al. Apparent Softening of Wet Graphene Membranes on a Microfluidic Platform. ACS Nano [Internet]. 2018;12 (5) :4312-4320. Publisher's Version
Barboza APM, Matos MJS, Chacham H, Batista RJC, de Oliveira AB, Mazzoni MSC, Neves BRA. Compression-Induced Modification of Boron Nitride Layers: A Conductive Two-Dimensional BN Compound. ACS Nano [Internet]. 2018 :null. Publisher's Version
Chacham H, Barboza APM, de Oliveira AB, de Oliveira CK, Batista RJC, Neves BRA. Universal deformation pathways and flexural hardening of nanoscale 2D-material standing folds. Nanotechnology [Internet]. 2018;29 (9) :095704. Publisher's VersionAbstract
In the present work, we use atomic force microscopy nanomanipulation of 2D-material standing folds to investigate their mechanical deformation. Using graphene, h-BN and talc nanoscale wrinkles as testbeds, universal force–strain pathways are clearly uncovered and well-accounted for by an analytical model. Such universality further enables the investigation of each fold bending stiffness κ as a function of its characteristic height h 0 . We observe a more than tenfold increase of κ as h 0 increases in the 10–100 nm range, with power-law behaviors of κ versus h 0 with exponents larger than unity for the three materials. This implies anomalous scaling of the mechanical responses of nano-objects made from these materials.
Dias RF, da Rocha Martins J, Chacham H, de Oliveira AB, Manhabosco TM, Batista RJC. Nanoporous Graphene and H-BN from BCN Precursors: First-Principles Calculations. The Journal of Physical Chemistry C [Internet]. 2018;122 (7) :3856-3864. Publisher's Version
2017
de Moraes EE, Coutinho-Filho MD, Batista RJC. Transport Properties of Hydrogenated Cubic Boron Nitride Nanofilms with Gold Electrodes from Density Functional Theory. ACS Omega [Internet]. 2017;2 (4) :1696-1701. Publisher's Version
Gonçalves JA, Nascimento R, Matos MJS, de Oliveira AB, Chacham H, Batista RJC. Edge-Reconstructed, Few-Layered Graphene Nanoribbons: Stability and Electronic Properties. The Journal of Physical Chemistry C [Internet]. 2017;121 (10) :5836-5840. Publisher's VersionAbstract

J. Phys. Chem. C, 2017, 121 (10), pp 5836–5840

We report a first-principles study of edge-reconstructed, few-layered graphene nanoribbons. We find that the nanoribbon stability increases linearly with increasing width and decreases linearly with increasing number of layers (from three to six layers). Specifically, we find that a three-layer 1.3 nm wide ribbon is energetically more stable than the C60 fullerene, and that a 1.8 nm wide ribbon is more stable than a (10,0) carbon nanotube. The morphologies of the reconstructed edges are characterized by the presence of five-, six-, and sevenfold rings, with sp3 and sp2bonds at the reconstructed edges. The electronic structure of the few-layered nanoribbons with reconstructed edges can be metallic or semiconducting, with band gaps oscillating between 0 and 0.28 eV as a function of ribbon width.

2016
Filho VFL, Machado G, Batista RJC, Soares JS, de Oliveira AB, de Vasconcelos C, Lino AA, Manhabosco TM. Effect of TiO2 Nanoparticles on Polyaniline Films Electropolymerized at Different pH. The Journal of Physical Chemistry C [Internet]. 2016;120 (27) :14977-14983. Publisher's Version
de Vasconcelos CKB, Batista RJC, da Régis MGR, Manhabosco TM, de Oliveira AB. A simple model for solute–solvent separation through nanopores based on core-softened potentials. Physica A: Statistical Mechanics and its Applications [Internet]. 2016;453 :184 - 193. Publisher's VersionAbstract
Abstract We propose an effective model for solute separation from fluids through reverse osmosis based on core-softened potentials. Such potentials have been used to investigate anomalous fluids in several situations under a great variety of approaches. Due to their simplicity, computational simulations become faster and mathematical treatments are possible. Our model aims to mimic water desalination through nano-membranes through reverse osmosis, for which we have found reasonable qualitative results when confronted against all-atoms simulations found in the literature. The purpose of this work is not to replace any fully atomistic simulation at this stage, but instead to pave the first steps towards coarse-grained models for water desalination processes. This may help to approach problems in larger scales, in size and time, and perhaps make analytical theories more viable.
Oliveira AB, Chacham H, Soares JS, Manhabosco TM, de Resende HFV, Batista RJC. Vibrational G peak splitting in laterally functionalized single wall carbon nanotubes: Theory and molecular dynamics simulations. Carbon [Internet]. 2016;96 :616-621. Publisher's Version
2015
Oliveira CK, Gomes EFA, Prado MC, Alencar TV, Nascimento R, Malard LM, Batista RJC, Oliveira AB, Chacham H, de Paula AM, et al. Crystal-oriented wrinkles with origami-type junctions in few-layer hexagonal boron nitride. Nano Research [Internet]. 2015;8 (5) :1680-1688. Publisher's Version
Manhabosco SM, Batista RJC, Neves da Silva S, Dick LFP. DETERMINATION OF CURRENT MAPS BY SVET OF HOT-DIP GALVANIZED STEEL UNDER SIMULTANEOUS STRAINING. Electrochimica Acta [Internet]. 2015;168 :89-96. Publisher's Version
de Lima AL, Muessnich LAM, Manhabosco TM, Chacham H, Batista RJC, Oliveira AB. Soliton instability and fold formation in laterally compressed graphene. Nanotechnology [Internet]. 2015;26 (4). Publisher's Version
2014
Marques dos Santos AM, Batista RJC, Meira Martins LA, Ilha M, Vieira MQ, Miquita DR, Rodrigues Guma FC, Mueller IL, Manhabosco TM. Corrosion and cell viability studies of graphite-like hydrogenated amorphous carbon films deposited on bare and nitrided titanium alloy. Corrosion Science [Internet]. 2014;82 :297-303. Publisher's Version
Batista RJC, Carara SS, Manhabosco TM, Chacham H. A Ferromagnetic Pure Carbon Structure Composed of Graphene and Nanotubes: First-Principles Calculations. Journal of Physical Chemistry C [Internet]. 2014;118 (15) :8143-8147. Publisher's Version
Batista RJC, Oliveira AB, Carara SS, Chacham H. Controlling the Electrical Response of Carbon Nanotubes Deposited on Diamond through the Application of Electric Fields. Journal of Physical Chemistry C [Internet]. 2014;118 (37) :21599-21603. Publisher's Version
2013
Manhabosco TM, Barboza APM, Batista RJC, Neves BRA, Mueller IL. Corrosion, wear and wear-corrosion behavior of graphite-like a-C:H films deposited on bare and nitrided titanium alloy. Diamond and Related Materials [Internet]. 2013;31 :58-64. Publisher's Version
2012
Barboza APM, Carara SS, Batista RJC, Chacham H, Neves BRA. Controlling the Electrical Behavior of Semiconducting Carbon Nanotubes via Tube Contact. Small [Internet]. 2012;8 (2) :220-224. Publisher's Version

Páginas